Prediction of Viral Replication Origins Using Least-Squares Support Vector Machines

نویسنده

  • Raul Cruz-Cano
چکیده

According to existing research, the replication origins (ORI) of certain viruses are located in DNA regions especially rich of repetitive sequences. Based on this observation, statistical methods for identifying likely sites of ORIs have been developed. In this presentation, some new relevant features, not associated with repetitive structures, are introduced. Then, Support Vector Machines (SVMs) are utilized to pinpoint the locations of replication origins in herpesviruses and caudoviruses. The SVMs achieved sensitivity and positive predictive value superior or at least equal to those provided by the previous sources. Also, as a byproduct of this process, the relative significance of each feature was estimated. Finally, a simple approach to obtain predictions, by combining the results of different techniques, is described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction

Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpe...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Least-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture

This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...

متن کامل

Structural health monitoring of concrete dams using least squares support vector machines

This study presents a least squares support vector machine (LSSVM) based displacement prediction model for health monitoring of concrete dams. LSSVM is a novel machine learning technique. The model can produce similar good generalization performance and learns faster than the basic support vector machines in engineering problems. The advantages such as high prediction accuracy, fast training sp...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007